Menu

A Quick Look at the Nitrogen Cycle and Nitrogen Fertilizer Sources

A look at the nitrogen cycle helps understand the advantages and disadvantages of particular nitrogen fertilizer sources. For example, if nitrogen fertilizer is to be top-dressed and not incorporated, understanding the risk of nitrogen loss through volatilization is important. If sulfur is needed, then selecting ammonium sulfate to provide nitrogen and sulfur may be a good choice.

The cost per pound of nitrogen applied is also an important factor. Selecting a fertilizer with high nitrogen percentage and managing it appropriately may be a top priority. Please follow the 4R stewardship practices (right source, right rate, right placement and right timing) whenever possible as a guide to fertilizer decisions. Assistance is available from your local Michigan State University Extension educators. A few key points on the synthetic nitrogen fertilizers below are adapted from the International Plant Nutrient Institute fact sheets on the various fertilizers:

Anhydrous ammonia (NH3):

  • Highest nitrogen content of any commercial fertilizer at 82 percent nitrogen.
  • Applied below soil surface through tractor-drawn knives or shanks as a pressurized liquid that immediately becomes a vapor after leaving the tank.
  • Potential safety hazard and requires careful safety practices.
  • Rapidly converts to NH4+, then converts to nitrate.
  • Seeds should not be placed close to a zone of recent ammonia application.

Urea-ammonium nitrate (UAN):

  • Liquid formulation.
  • Nitrogen concentration ranges from 28 percent nitrogen to 32 percent nitrogen (more dilute in regions with colder winter temperatures).
  • Fifty percent of the total nitrogen comes from urea, the other 50 percent from ammonium nitrate, resulting in 25 percent NO3-, 25 percent NH4+ and 50 percent urea.
  • Can be blended with other nutrients and many agricultural chemicals.
  • Versatile: Can be injected as a band application at planting, sprayed onto soil surface, dribbled as a band at planting or sidedress time, added to irrigation water or applied as foliar spray.
  • Subject to some volatilization (gas) loss or urea component if left on the surface. Inhibitors that slow nitrogen conversion and loss can be added.

Urea:

  • Dry granular with 46 percent nitrogen.
  • Incorporation reduces nitrogen loss, but often surface applied as top-dress on perennial grass and other crops.
  • Most of the nitrogen in urea is not immediately available to plants and must be converted to more available forms.
  • Once applied, urea nitrogen is quickly (normally within two days) converted to NH3 and is vulnerable to volatilization for several days until the NH3 is converted to NH4+, and finally to NO2-.

Ammonium nitrate:

  • Dry granular with 33 to 34 percent nitrogen.
  • Fifty percent in ammonium form, 50 percent in nitrate form, so nitrate is immediately available to plants and ammonium provides delayed nitrogen supply.
  • Popular for pasture and top-dress application since very little nitrogen loss through ammonia volatilization occurs.
  • High density results in even spreading across wide distances.
  • Limited availability because of its potential use in illegal explosives

Ammonium sulfate:

  • Dry granular with 21 percent nitrogen and 24 percent sulfur.
  • Used primarily where there is a need for nitrogen and sulfur.
  • Not the most economical source of nitrogen since concentration is relatively low.
  • More acidifying effect on soils than ammonium nitrate due to the nitrification process, not because of the sulfur content.
  • If used on alkaline soils, it should be incorporated or watered in, if possible, to avoid nitrogen loss from volatilization.

Soil organic matter:

  • A major source of nitrogen used by crops.
  • Easily decomposed portions of organic matter break down quickly and release nutrients, leaving behind a much more stable residue referred to as humus, which builds up slowly over time. This is the more permanent component of soil organic matter.
  • About 2,000 pounds of nitrogen in organic forms is contained in each percent of soil organic matter, and releases approximately 20 pounds of nitrogen annually.
  • Soil testing labs generally calculate an estimate of nitrogen provided by previous crops.

For more information on the nitrogen fertilizers and the nitrogen cycle, see “A quick look at the nitrogen cycle and nitrogen fertilizer sources – Part 1.

Source: Jim Isleib, Michigan State University 

Recent News

Soybean Drying, Storage Could Be Challenging
10/16/2019

A challenging soybean harvest this fall is raising many storage and drying questions, according to Ken Hellevang, an agricultural engineer with North Dakota State University Extension. According to the National Agricultural Statistics Service on Oct. 6, the percentage of soybeans dropping leaves was 92% in North Dakota, 80% in Minnesota, 78% in South Dakota, 68% […]

Sampling for Soybean Cyst Nematode – Fall is the Time!
10/15/2019

Harvest is well underway and once the soybeans are off the fields this provides some time to sample soil for the SCN populations.  The SCN Coalition theme for the next few years is What’s your number?  Do you know which fields have SCN and what the current population is sitting at?  If its high, then there […]

Corn and Soybeans Move Higher on Supply and Trade
10/15/2019

Strong price rallies in both corn and soybeans closed out the week after a mixed reaction on Thursday.  Corn prices initially fell due to higher than expected production levels.  Severe winter weather over a substantial area of the Corn Belt, along with a possible limited trade deal, brought the subsequent rally on Friday.  If the […]

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now