Menu

Immobilizing Nitrogen through the Use of Cover Crops

It has been well-documented that annual precipitation across parts of South Dakota and the Midwest has increased over time (Figure 1). It does not come as a complete surprise then that we have seen an increase in the installation of subsurface tile drainage systems in eastern South Dakota (Figure 2). Tile drainage can reduce sediment erosion and particulate-bound phosphorus losses on agricultural land with poor natural drainage. Studies have also shown, however; that tile drainage may increase exports of soluble nutrients to surface waters such as nitrate-nitrogen and dissolved phosphorus. Nitrate lost from agricultural soils is costly to producers, poses environmental concerns when entering rivers and lakes, and are a health risk when reaching wells and aquifers used for drinking water. Balancing the amount of N needed for optimum plant growth while minimizing nitrate-nitrogen (NO3-N) transported to ground and surface waters remains a major challenge for those attempting to understand and improve agricultural nutrient use efficiency.

Monitoring Nitrate Losses
With subsurface tile drainage comes the opportunity to monitor nitrate losses in drainage water under different cropping scenarios and management systems. In one study, nitrate losses in subsurface drainage water from continuous corn and corn-soybean systems were about 37X and 35X higher, respectively, than from the alfalfa and CRP systems. This was due primarily to greater season-long evapotranspiration resulting in less drainage and greater uptake and/or immobilization of N by perennial crops. Evapotranspiration (ET) is a term used to describe the transport of water into the atmosphere from soil (soil evaporation), and vegetation (transpiration). In other words, the longer you continue to grow something, the less likely it is that nitrogen will be lost from the soil profile.

Cover Crops & Reducing Nitrate Losses
In principle, the incorporation of cover crops into a rotation can be thought of as a way to mimic those perennial systems (prairie) where nitrogen is rarely lost. Unless the ground is frozen on rangeland, something is always going to be growing. Cover crops extend the vegetative growing season on your fields and reduce nitrate losses, compared to no-cover crop, by converting inorganic N compounds into an organic form. As cover crop residue decomposes the N is released to the next year’s crop. Cover crops also have the potential to increase soil organic matter, and reduce soil erosion and fertilizer inputs.

While seed and planting costs (and spraying if the species overwinters) need to be weighed against any potential agronomic benefits they may provide, cover crops can be an effective option to improve water quality in subsurface tile drainage systems.

Source: David Kringen, South Dakota State University 

Recent News

USDA to Extend Flexibility on Crop Insurance Program
11/15/2019

The U.S. Department of Agriculture’s (USDA) Risk Management Agency (RMA) today announced it will continue to defer accrual of interest for 2019 crop year insurance premiums to help the wide swath of farmers and ranchers affected by extreme weather in 2019. Specifically, USDA will defer the accrual of interest on 2019 crop year insurance premiums […]

The Conservation Question, Part 4-An Overview of Acres
11/15/2019

Throughout its history, conservation policy can be understood, in part, as representing attempts at achieving balance.  Policies have involved balancing the demands for producing crops with the limits of, and impacts on, natural resources; they have also tried to achieve different balances within production and among crops and land uses.  This article continues the discussion […]

Cost and Returns from Different Nitrogen Application Timing in Illinois
11/13/2019

Overall returns on Illinois grain farms are projected to be much lower in 2019 than recent years, resulting in more consumer about managing input costs. Fertilizer, seed, and pesticide costs represent a large portion of the total cost of producing corn, with fertilizer costs historically larger than seed and pesticide per-acre costs on high-productivity farmland […]

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now